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Abstract

A novel, stable, implicit compact scheme solver that is higher order in space, suitable for modeling steady-state and

time-dependent phenomena on nonuniform grids for one-dimensional configurations, is presented. Several properties of

compact scheme discretizations are introduced to develop efficient algorithms for Jacobian matrix generation and Jaco-

bian-vector multiplication using a new component form for Jacobian operations. Composite nonuniform grids are

introduced that enable the implicit compact scheme solver to achieve sixth order accuracy. A robust Newton�s method

is employed with explicit generation of Jacobian matrices. Superior resolution characteristics of the implicit compact

scheme solver are demonstrated with several steady-state and time-dependent problems for the Burgers equation.

The example of the solution of stiff flame problem is given. An analysis of spectral properties of Jacobian matrices

is presented, which shows that the condition number and the eigenvalue distributions behave similarly to those found

in Jacobians associated with low-order discretizations. Two sparsification strategies are developed for the systematic

approximation of a dense Jacobian aimed at the practical implementation of linear system preconditioning through

partial Jacobians.
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1. Introduction

Implicit numerical solvers have been used for more than half a century since their introduction by Curt-

iss and Hirschfelder [1] for the solution of a model stiff ordinary differential equation. By stiff, we imply here
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that the solution of such an equation contains several scales in time or/and length and that these scales are

very disparate. Implicit techniques are used for stiff problems where explicit methods [2] encounter severe

difficulties in obtaining stable results. Examples of stiff problems appear in many fields, but of particular

interest to the present work are problems of chemically reacting flows. Chemically reacting flows utilizing

hydrocarbon fuels occur in a variety of energy conversion processes such as combustion, propulsion, and
fuel reforming, to name just a few.

Modeling flames, a typical nonlinear stiff problem, with a Newton solver is one of the application areas

that frequently employs implicit time discretization [3–6]. Pseudo-time relaxation, discretized implicitly, can

be used to bring the discrete vector of unknowns into the convergence domain of the steady-state problem.

This latter approach has been used successfully for calculations of steady-state reacting flows in the low

Mach number regime with detailed chemical kinetics and transport properties of the multicomponent mix-

ture [7–18]. Generally, a low-order discretization in space is used in the implicit solver. The convective terms

are discretized with a first order upwind scheme and the other derivative terms are discretized with centered
differences (CD).

The straightforward extension of a low order in space, fully coupled, implicit solver to the case of time-

dependent flames is hindered by the presence of large artificial diffusion from the first order upwind discre-

tization of the convective terms. One way of controlling the artificial viscosity is through adaptive grid

techniques that allow the grid to change at various time steps [19–21].

Alternatively, higher order spatial discretizations, without the artificial viscosity of low order methods,

can be used in conjunction with an implicit solver. Several popular higher order discretizations can be

found in [22–28]. A class of very accurate discretizations which can be incorporated in Newton�s solver
was developed by Lele [29]. The compact scheme solvers compare favorably with other existing higher or-

der solvers [30]. For a comparative description of higher order schemes see [31].

The key idea of compact schemes, that of writing a linear algebraic equation relating the values of a

function and its derivative at several grid points, is much older than the 1992 paper of Lele [29]. Two dec-

ades earlier, a third-order upwind compact scheme was introduced by Tolstykh [32], and a fourth-order

accurate compact scheme was presented in the review of Orszag and Israeli [33]; that particular form is also

called the Padé scheme. The merit of Lele�s work is in the development of a unified approach for the

generation of compact schemes for derivatives of any order with prescribed precision and stencil width.
Following the unified approach, a family of boundary closures, interpolations, and numerical filters were

also derived in [29]. Several extensions to compact schemes exist. Upwind compact schemes have been stud-

ied by Tolstykh and Lipavskii [34]. A coupled solution for the first and second derivatives is proposed in the

method of Mahesh [35]. Gamet et al. [36] developed compact schemes for nonuniform grids.

Compact schemes have been used in modeling realistic multidimensional flows. In [37], DNS of a turbu-

lent flame was carried out using compact schemes and an explicit time discretization. A semi-implicit solver

with compact schemes was used for the calculation of complicated low Mach number 3D flows in curvilin-

ear coordinates in [38,39]. The first implementation of compact schemes with an implicit time discretization
was reported in the work of Pereira et al. [40]. They developed a Newton solver for a two-dimensional finite

volume formulation of a steady-state, incompressible, constant-property flow. Within each Newton itera-

tion, the system of linearized equations was solved with FGMRES [41] and a matrix-free approach that did

not store the Jacobian entries explicitly. In [40], the linear solver contained two levels of iterations. Outer

iterations were done with FGMRES, and inner iterations were done with unpreconditioned GMRES [42].

Despite its apparent attractiveness, the matrix-free method has severe drawbacks for modeling flames.

The accuracy of the Gateaux derivative (within the matrix-free approach) is strongly affected by the mag-

nitude of the perturbation parameter for the finite-digit representation of real numbers. A single perturba-
tion parameter may be sufficiently small for the hydrodynamic variables such as velocity, yet it can be very

large for some intermediate species concentrations. A large perturbation can reduce the accuracy of the

matrix-vector product, which, in turn, results in an increase in the number of linear solver iterations
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[31]. In addition, the balance of computational times between performing a matrix-vector product and per-

forming two residual evaluations (required during Jacobian evaluation) may be shifted for reacting flow

calculations [31].

Another word of caution should be given on using iterative linear solvers without preconditioning, such

as employed in [40] for the GMRES solver within the FGMRES iterations. Such techniques can be efficient
for diagonally dominant matrices. Unfortunately, the diagonal dominance is totally lost for many realistic

problems. Thus, the efficiency of the unpreconditioned iterative solver is sacrificed.

In this paper, we consider the development of an implicit compact scheme solver for one-dimensional

problems with particular emphasis on reacting flows. A one-dimensional configuration allows us to avoid

challenges associated with multidimensional problems and it enables us to concentrate fully on the basic

principles of the numerical solver. This paper is organized as follows. In the next section, the compact

schemes are introduced in the case of nonuniform grids, followed by the introduction of several properties

of compact schemes aimed at providing a theoretical background for the development of an implicit com-
pact scheme solver. In Section 3, an example of the solver implementation is given, and several solutions of

the Burgers equation are demonstrated. Solutions of implicit solvers (compact scheme and traditional low

order) are compared, and the accuracy of the implicit compact scheme solver is analyzed. The ability of the

new solver to handle stiff problems is demonstrated by modeling the propagation of an unsteady flame. In

addition, the spectral properties of compact scheme Jacobians are analyzed. Two strategies for Jacobian

approximation are investigated. Section 4 concludes this paper with a summary of the work presented.
2. Compact scheme properties

In the present work, we employ the compact schemes of [36] with built-in nonuniform grid metrics. Fol-

lowing [29,36], the calculation of the second derivative is carried out using the corresponding compact

scheme, instead of applying the first derivative operator twice. Defined on a 1D nonuniform grid {xi,

i = 1, . . ., N}, a function u(x) is smooth, i.e., it is continuous, together with all of its derivatives, on the

domain x1 6 x 6 xN. The compact scheme discretizations of the first (u 0 = ux) and second (u00 = uxx) deriv-

atives are written in matrix form as
Axu0 ¼ Bxu; ð1Þ

Axxu00 ¼ Bxxu: ð2Þ

Here, Ax, Bx, Axx, and Bxx are banded matrices, constant for a given grid. The expressions for the evalu-

ation of entries within these matrices are defined by matching the terms of Taylor series expansions [29,36].

The development of compact schemes on nonuniform grids contains one delicate difficulty not present in

the uniform grid case. If very high order is sought for the discretization on nodes in a selected stencil, then

the discretization error may grow without bound for a certain combination of grid step sizes. Unfortu-

nately, this problem is not explained in [36]. The reason for this problem is as follows. The truncation error

term contains numerous algebraic expressions involving grid step sizes. There could be a division of some
term by an algebraic expression that vanishes for some particular combination of grid steps, leading to an

unstable discretization scheme. However, the same scheme can be stable for all other combinations of grid

steps. Unbounded growth of the truncation error, which may occur for both first and second derivatives,

can be avoided if a compact scheme is generated that has no subtraction in any denominator within the

expression for the local truncation error. This goal is accomplished by using a reduced order of accuracy

on nonuniform grids.

We use the same compact scheme discretization as derived in [36] where possible. In addition, we use the

following relationships for the second derivative at the boundary nodes:
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u001 þ 11u002 ¼ b2
11u1 þ b2

12u2 þ b2
13u3 þ b2

14u4 þ LTE2
1; ð3Þ

10u001 þ u002 þ 10u003 ¼ b2
21u1 þ b2

22u2 þ b2
23u3 þ b2

24u4 þ LTE2
2; ð4Þ
where the coefficients for nonuniform grids are defined as
b2
11 ¼

6h2 þ 48h3 þ 24h4
h2ðh2 þ h3Þðh2 þ h3 þ h4Þ

; b2
12 ¼

18h2 � 48h3 � 24h4
h2h3 h3 þ h4ð Þ ;

b2
13 ¼

24h3 � 18h2 þ 24h4
h3ðh2 þ h3Þh4

; b2
14 ¼

18h2 � 24h3
h4ðh3 þ h4Þðh2 þ h3 þ h4Þ

;

ð5Þ
and
b2
21 ¼

3h2 þ 21h3 þ 12h4
5h2ðh2 þ h3Þðh2 þ h3 þ h4Þ

; b2
22 ¼

9h2 � 21h3 � 12h4
5h2h3ðh3 þ h4Þ

; ð6Þ

b2
23 ¼

9h3 � 9h2 þ 12h4
5h3ðh2 þ h3Þh4

; b2
24 ¼

9h2 � 9h3
5h4ðh3 þ h4Þðh2 þ h3 þ h4Þ

: ð7Þ
The expression for node 1 is given by Eq. (3), and the expression for node 2 is given by Eq. (4). The grid

step is hi = xi � xi� 1. Expressions for second derivatives on nodes N � 1 and N can be obtained in a similar

way; see also [29,36]. A summary of the formal orders of accuracy for the compact schemes used in the

present work is given in Table 1.

2.1. Computational stencils of compact schemes

Each of the compact scheme equations given in Table 1 uses a fixed number of nodes to define relation-
ships for the derivatives. For example, there are four nodes employed in Eqs. (3) and (4). In the literature,

the set of nodes used in these linear equations is sometimes called a stencil. In the discretization scheme

presented above, the maximum number of nodes per equation is five.

Traditionally, stencil width is defined as the number of nodes needed to generate the approximation to

the derivative at each grid node. Multiplying Eq. (1) on the left by A�1
x ; we get
u0 ¼ ðA�1
x BxÞu � Cxu: ð8Þ
Matrix Cx, of size N · N, is dense, and its entries define numerical coefficients of the discretization stencils

for each node. Therefore, matrix Cx will be called a stencil matrix. In a similar manner, another dense

N · N stencil matrix Cxx can be obtained for the second derivative. Dense matrices Cx and Cxx imply that

the stencil width in the traditional sense is N for first and second derivatives. In other words, the value of a

derivative at a given node depends on the function values at all grid nodes in the direction in which the

derivative is being taken.
1

of accuracy for the compact scheme discretizations (last two columns)

tive Node type Uniform grid Nonuniform grid

Inner, 3 6 i 6 N � 2 6 4

Boundary, i = 1, N 3 3

Boundary, i = 2, N � 1 4 4

Inner, 3 6 i 6 N � 2 6 3

Boundary, i = 1, N 2 2

Boundary, i = 2, N � 1 2 2
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When tensor product grids are used for two-dimensional problems, stencil matrices can be defined for

each coordinate direction. Moreover, cross-derivatives appear in the full Navier–Stokes equations, and

the discretization stencil for the cross-derivative uxy contains all nodes in the two-dimensional computa-

tional domain. Thus, unlike the low order discretization methods that use a small, nine-point stencil in

2D, the compact scheme discretization produces very large stencils.

2.2. Linearity of compact schemes

For simplicity, we consider a nonlinear residual function f(u,u 0) of variables u(x) and u 0(x), where x is a

spatial variable. The corresponding nonlinear governing equation is f(u,u 0) = 0. The spatial derivative u 0 is

discretized with compact schemes. Newton�s method can be used to minimize the residual f, with the Jaco-

bian matrix calculated explicitly as follows. We define the Jacobian matrix entry J(f,u)ij as a one-sided deriv-

ative of the residual f at node i, taken with respect to the function u at node j, i.e.,
Jðf ; uÞij ¼ lim
duj!0

fiðuþ duÞ � fiðuÞ
duj

; ð9Þ
where u = {u1, . . ., uj, . . ., uN}
T and du = {0, . . ., 0, duj, 0, . . ., 0}

T. If i 6¼ j, then the perturbed value uj + duj
results in a perturbed value of the residual only through the perturbed spatial derivative eu0i , where ð~�Þ de-
notes a perturbed value. Similar to Eq. (8), the expression for the perturbed compact derivative can be

rewritten as
eu0i ¼XN
k¼1

ðCxÞik euk ¼ ðCxÞij euj þXN
k¼1
k 6¼j

ðCxÞikuk ¼ u0i þ ðCxÞijduj: ð10Þ
The expression
eu0i ¼ u0i þ ðCxÞijduj ð11Þ
is exact. Here and further in the text, no summation is implied for a repeated index. Eq. (11) defines the

property of linearity of compact schemes, or that a compact discretization is a linear function of nodal en-

tries. Similarly, the property of linearity can be established for other spatial derivatives.

Using the linearity of compact schemes, each Jacobian entry J(f,u)ij can be computed in a straightfor-

ward way:
Jðf ; uÞij ¼ ðfuÞidij þ ðfu0 ÞiðCxÞij: ð12Þ
Here, fu = of/ou and fu0 ¼ of =ou0 are the partial derivatives of residual f with respect to u and u 0, and dij is
the Kronecker delta. Analytical expressions for these partial derivatives can be obtained and evaluated at
each node.

2.3. Jacobian matrix-vector product

Using Eq. (12), a Jacobian matrix-vector product w = Jv is
wi ¼
XN
j¼1

J ijvj ð13aÞ

¼ ððfuÞi þ ðfu0 ÞiðCxÞiiÞvi þ
XN
j¼1

j 6¼i

ðfu0 ÞiðCxÞijvj ¼ ðfuÞivi þ ðfu0 Þi
XN
j¼1

ðCxÞijvj: ð13bÞ
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The last term on the second line can be simplified if one recalls that the dot product of the stencil matrix

with a vector produces the derivative of that vector (viz. Eq. (8)). Therefore, the following exact expression

is obtained for the Jacobian-vector product:
wi ¼ ðfuÞivi þ ðfu0 Þiv0i: ð14Þ

The first term in Eq. (14) reflects the presence of terms local to node i in the residual f, such as a time deriv-

ative or the source terms due to a chemical reaction. The second term in Eq. (14) contains information

about the spatial derivatives. Expressions fu and fu0 will be called the components of the Jacobian, and

the Jacobian-vector product, as calculated by Eq. (14), will be called the component form of Jacobian-

vector product. Unlike the matrix-free approach, the component product is exact.
The matrix-vector product given in Eq. (13a), which we will refer to as a direct product, requires O(N2)

floating point operations to obtain vector w. Another unfortunate aspect of the direct product is that all

Jacobian entries Jij must be stored, consuming O(N2) double precision memory locations. The use of the

component form of the Jacobian-vector product provides a computationally cheaper alternative. The first

term of Eq. (14) is evaluated similar to the direct matrix-vector product, except that it requires O(N) float-

ing point operations to obtain vector w1 = fuv. The second term in Eq. (14) is formed in two steps. First, the

spatial derivative is evaluated for vector v using the compact scheme, as in Eq. (1), with a computational

cost of O(8N) operations. The second step is to calculate the outer vector product of the derivative vector v 0

with the vector of coefficients fu0 , involving O(N) operations. The storage for the coefficient vectors fu and

fu0 is O(2N). In total, the component form of the Jacobian-vector product requires only O(10N) floating

point operations and the storage of O(5N) double precision numbers.

In multidimensional chemically reacting flows, additional types of derivatives are used, and the number

of unknowns per node is large (from 20 to upwards of 200 unknowns). However, the comparison based on

memory consumption and operation counts always favors the component product over the direct product.

The difference is usually of several orders of magnitude, both in memory allocation and in computational

cost [31].
2.4. Determination of partial Jacobians

One of the common features of compact scheme stencils is the rapid exponential decay in the amplitude

of the nodal coefficients with distance from the central node. It can be shown that this decay of stencil ma-

trix entries stems from the exponential decay of the off-diagonal entries of the inverse of banded matrix Ax

[43]. Due to the rapid decay in the entries on each row of Cx and Cxx, only few nodes to the left and to the

right of the central node have coefficients with a magnitude larger than some prescribed threshold value.
These nodes constitute a partial stencil, including the central node. Several sparsification strategies with

threshold h can be devised to define partial stencils and, therefore, the structure of a partial Jacobian.

For each grid node i, we can introduce a subset of nodes representing a partial stencil Ui(j) for evaluation

of spatial derivatives, where 1 6 i,j 6 N. Three sparsification strategies are given below:
k 2 UiðjÞ if jðCxÞikj > hmax
m

jðCxÞimj; ð15Þ

k 2 UiðjÞ if jðCxxÞikj > hmax
m

jðCxxÞimj; ð16Þ

k 2 UiðjÞ if jðJÞikj > hmax
m

jðJÞimj; ð17Þ
where typical values of h might be in the range of 10�4 to 10�2. In these sparsification strategies, we always

include all grid nodes between the leftmost and rightmost nodes of the partial stencil given by the subsetUi(j).

The Jacobian formed with the partial stencils of the compact scheme will be called a partial Jacobian Jp. The
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partial Jacobian approximation fits the operation of a preconditioner solve naturally, because this operation

delivers an approximate solution to the linear problem.

2.5. Stability analysis of the implicit compact scheme discretizations

The stability of compact scheme solvers has been analyzed in the literature for explicit time discretiza-

tions and semi-discrete problems. Results of the semi-discrete form of the stability analysis are applicable to

both explicit and implicit time discretizations. In [29], it was found that the explicit Euler method is uncon-

ditionally unstable for the advection equation discretized with compact schemes. For the same advection

equation, conditional stability was established using Runge–Kutta methods for the time discretizations.

The explicit Euler and Runge–Kutta discretizations of the model conduction equation were both found

to be conditionally stable.

Carpenter et al. [44], who studied the time stability of the semi-discrete form of the model advection
equations on uniform grids using G–K–S theory, showed that some but not all combinations of inner

schemes and boundary closures given by Lele [29] are time-stable. One of the time-stable schemes denoted

in [44] as 3–4–6–4–3 (viz. Table 1 for the first derivative) and originally developed in [29] for uniform grids

has found its use in the work of Gamet et al. [36].

In [36], a vonNeumann (Fourier) stability analysis was carried out for semi-discrete forms of the advection

and conduction equations on nonuniform grids, both of which were found to be stable. Next, the effect of

compact scheme boundary closures on the stability of differential operators was investigated using a matrix

stability analysis. For an explicit, third-order Runge–Kutta time discretization, it was shown that the com-
pact scheme developed is conditionally stable for a range of CFL numbers CFL = cDt/hmin < CFLmax for the

advection equation and for a range of Fourier numbers Fo ¼ lDt=h2min < Fomax for the conduction equation.

In the present work, the implicit Euler method is to be used for nonuniform grids, together with the com-

pact scheme of Gamet et al. [36] and modifications given by Eqs. (3) and (4). The matrix stability analysis is

given below for the model one-dimensional advection equation
ou
ot

þ c
ou
ox

¼ 0 ð18Þ
and the model one-dimensional conduction equation
ou
ot

� l
o
2u
ox2

¼ 0: ð19Þ
Here, u(x,t) is a function of space and time, and c and l are constants that represent advection velocity and

kinematic viscosity, respectively.

The matrix stability analysis developed by Lax and Richtmyer [45] is applicable to fully discrete prob-

lems with imbedded boundary conditions. In fully discrete form (or stationary iterative form), the time-

stepping (or iterative) procedure for a solution vector un+1 at time level (or iteration) n + 1 is written
unþ1 ¼ Kun þ p; ð20Þ

where an iteration matrix K and an update vector p describe spatial operators and source terms given by a

differential equation. A necessary condition for the stability of a linear problem, such as given by Eqs. (18)
and (19), is that the spectral radius of the iteration matrix is bounded as
qðKÞ 6 1: ð21Þ

In [45], a sufficient condition for the stability of a linear problem with constant coefficients is given by the

inequality iKi 6 1. Unfortunately, the sufficient condition may be too strong for some practical methods

and may be inadequate for the case of systems of nonlinear equations.
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The discrete form of Eq. (18), in the case of the first order implicit Euler method, is
Fig. 1.

numbe

uniform
unþ1 ¼ ðI þ cDtCxÞ�1un ¼ Kcun; ð22Þ

and the discrete form of Eq. (19) is
unþ1 ¼ ðI � lDtCxxÞ�1un ¼ Klun: ð23Þ

Here, un+1 and un represent solution vectors at time levels n + 1 and n; Dt – the time step of the Euler

method; I – the identity matrix; Cx and Cxx – the stencil matrices for first and second derivatives, respec-

tively; and Kc and Kl – the iteration matrices. To accommodate the boundary condition for Eq. (18), the

first row of the stencil matrix is set to zero except for the main diagonal entry, which is unity. To implement

the boundary conditions for Eq. (19), the first and the last rows of the stencil matrix are set to zero except

for the main diagonal entries, which are set to unity. The effect of the boundary closures of the compact
scheme is nonetheless included in the iteration matrix through coefficients within other rows of the stencil

matrix. For the discretization to be stable, it is necessary that all eigenvalues of Kc and Kl lie within a unit

circle, as given by Eq. (21) [29,36,45].

The eigenvalue analysis of iteration matrices of Eqs. (22) and (23) in the analytical form for the general

case of N grid points does not seem to be possible due to numerous entries of dense stencil matrices Cx
Distribution of the eigenvalues of the iteration matrix for the advection equation on the complex plane for selected CFL

rs. Number of nodes: 80. Horizontal coordinate: real part. Vertical coordinate: imaginary part. Panel (a) corresponds to

grid, panel (b) – random grid, and panel (c) – geometric grid.
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and Cxx. Instead the eigenvalue analysis is carried out for several practical cases following [36]. Three grids

are selected: a uniform grid; a randomly spaced grid; and a grid with smoothly varying spacing. Each grid has

80 nodes. The computational domain is 0 6 x 6 5. As in [29,36], the boundary conditions are homogeneous

for the advection equation: u(0,t) = 0; and for the conduction equation: u(0,t) = u(5,t) = 0. The uniform grid

has hi . 0.06329; the random grid has a randomly varying step size 0.052638 6 hi 6 0.0732; and the geomet-
ric grid has a constant ratio of decreasing step size hi+1 = hi/1.3.

Shown in Figs. 1 and 2 are the distributions of eigenvalues of Kc and Kl, respectively. As can be seen

from Fig. 1, for all cases studied, the eigenvalues are located inside the unit circle on the complex plane.

Note that the CFL number is calculated based on the smallest grid step size. It is expected that for even

larger values of time step Dt and, hence, the CFL number, the condition given by Eq. (21) will remain sat-

isfied. All eigenvalues of Kl are real-valued and positive. As can be seen from Fig. 2, in all cases considered,

the condition q(Kl) 6 1 is satisfied. The Fo number is calculated based on the smallest grid step size. It is

again expected that for even larger values of time step Dt and, hence, the Fo number, the condition given by
Eq. (21) will remain satisfied.
Fig. 2. Distribution of the eigenvalues of the iteration matrix for the conduction equation for selected Fourier numbers. Number of

nodes: 80. Horizontal coordinate: index of eigenvalue. Vertical coordinate: eigenvalue (real, in the decreasing order of size). Panel (a)

corresponds to uniform grid, panel (b) – random grid, and panel (c) – geometric grid.
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3. Computational results

The theory of the previous section provides sufficient guidance for the development of an implicit solver

for a one-dimensional (1D) configuration. Consider the following equation for the function u(x,t):
f ¼ ou
ot

þ w
ou
ox

� l
o2u
ox2

þ gðu; x; tÞ ¼ 0: ð24Þ
Here, w represents the convection velocity; l – the viscosity; and g(u,x,t) – the source term. If w = u, then

this is the nonlinear Burgers equation. If w = c = constant, then the linear Burgers equation is obtained. A

detailed list of possible analytical solutions is given by Benton and Platzman [46]. Some frequently used

solutions of the steady-state and time-dependent Burgers equations are given in [24].

In the current work, the solution of the steady-state Burgers equation proceeds in the following manner.

Starting from some initial guess, the solution vector is advanced in time using the noniterative time-

linearization of Briley and McDonald [47,48]. The effect of the choice of the initial guess is minimal as long

as the initial time step is sufficiently small (Dt0 = 10�3). The time step size is increased gradually (i.e.,
Dtn+1 = 1.4Dtn) so that the effect of the transient term becomes smaller during time-stepping. Once some

specified value of the time step is reached (Dtn = 10), Newton�s method for the steady-state problem is en-

gaged [49–51], using the most recent iterate obtained in the process of time-relaxation as the starting guess.

The basic form of Newton�s method is
Jðf k; unþ1;kÞDunþ1;k ¼ �f k; ð25Þ

where k indicates the iteration number within Newton�s method. Here, J(fk,un+1,k) represents the Jacobian

matrix for the residual vector fk = f(un+1,k,un) with respect to the vector un+1,k; Dun+1,k – the increment vec-

tor; and un+1,k = un+1,k� 1 + Dun+1,k � 1 – the solution vector.

The solution of the time-dependent Burgers equation has many features in common with the process of
time-relaxation of the steady-state problem, but now the time step size is controlled by the CFL and Fo

numbers, i.e., Dt ¼ min CFL hmin

w ; Fo
h2
min

l

� �
. The solution must be accurate at all time levels. For this pur-

pose, the following restriction is set: CFL = Fo = 0.1. Stable calculations of the time-dependent Burgers

equation can be carried out with much larger time steps, but then solution accuracy will be sacrificed. Three

implicit methods are employed: the first-order Euler method, the second-order Crank–Nicolson method

(also involving two time levels) [24], and second-order backward differences (involving three time levels).

At each time level, the equation is solved with the Briley–McDonald approach for the Euler and Crank–

Nicolson discretization and with the Newton solver for the three-time-level backward discretization.
Generally, only first order temporal accuracy can be obtained for nonlinear equations with the Briley–

McDonald method. However, for linear equations, the time linearization produces second-order-accurate

results if a two-level Crank–Nicolson time discretization is used.

Because the grid is held fixed, compact scheme matrices Ax, Bx, Cx, Axx, Bxx, and Cxx need to be eval-

uated only once at the beginning of the calculations. The stencil matrices Cx and Cxx are dense, and each

component must be stored; for example, one stencil matrix, with double precision representation of its

entries, requires 80 kilobytes of memory for a 100-node grid.

During the time-stepping procedure, the following operations are carried out routinely. Tridiagonal sys-
tems (Eqs. (1) and (2)) are solved with the highly efficient direct Thomas algorithm [24]. According to Eq.

(12), the Jacobian elements for the nonlinear time-dependent Burgers equation are given in component

form as
Jðf ; uÞij ¼ ðfuÞidij þ wiðCxÞij � lðCxxÞij; ð26Þ

ðfuÞi ¼
1

Dt
þ ðwuÞiðuxÞi þ ðguÞi: ð27Þ
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The derivatives wu and gu are formed analytically for the particular Burgers equation, e.g., wu = 1 for

the nonlinear Burgers equation. The modeling of one-dimensional problems renders a significant sim-

plification with respect to the linear system solver for Eq. (25). Because of the small number of

unknowns, the full Jacobian matrix can be stored, and a direct solver with Gaussian elimination

can be used [52].
For comparison purposes, calculations with traditional (low order) finite difference discretizations have

also been carried out, in which first derivatives in space are discretized using first order upwinding and sec-

ond derivatives are discretized using centered differences (of second order accuracy on uniform grids). On

nonuniform grids, both derivative discretizations are first-order accurate. The computational stencil for the

low order scheme has three nodes. The low order discretization code has been obtained by replacing the

compact scheme discretization with the low order discretization and by replacing the compact scheme sten-

cil matrices with the stencil matrices of the low order scheme. The linear system with the low order Jacobian

Jlow is solved with the efficient Thomas algorithm.
3.1. Steady-state model problem without source terms

From [24], the steady-state form of the nonlinear Burgers equation (Eq. (24)) without source terms has

the analytical solution
uðxÞ ¼ u0g 1� exp gR
x
L
� 1

� �� �� �
1þ exp gR

x
L
� 1

� �� �� ��1

ð28Þ
for the boundary conditions u(0) = u0 and u(L) = 0. The parameter R has the properties of the Reynolds

number and is defined as R ¼ u0L
l . The parameter g is the root of the nonlinear equation
g� 1

gþ 1
¼ expð�gRÞ: ð29Þ
The following set of numerical parameters is selected: L = 5; u0 = 1; and l = 0.5. For these settings, we

obtain R = 10 and g � 1.00009072. The presence of the exponential function in the solution results in sig-

nificant gradients of the function u(x), together with its derivatives, near x = L. Therefore, more grid nodes

should be clustered in this region. For a given weight function W(x), the grid nodes are equidistributed

according to the expression W(xi+1) �W(xi) = DW = constant, and the total number of nodes is given

by N = 1 + (W(L) � W(0))/DW. Here, a family of nonuniform grids has been generated with a weight func-

tion W(x) based on the arclengths of u(x) and its derivatives u(IV)(x) and u(V)(x) :
W ðxÞ ¼
Z x

0

ð1þ uðtÞ2Þdt þ w1

Z x

0

ð1þ uðIV ÞðtÞ2Þdt þ w2

Z x

0

ð1þ uðV ÞðtÞ2Þdt: ð30Þ
In selecting this weight function, a balance is sought to obtain an efficient refinement strategy suitable for

both low and high order discretizations. The choice of the even and odd derivatives (u(IV)(x) and u(V)(x)) for

the calculation of W(x) is intended to provide sufficient resolution characteristics for even and odd modes

present within the solution. No claim is made here that this weight function produces an optimal grid for
both the compact scheme and the low order methods for the given problem. However, this weight function

results in smoothly distributed grid nodes that are clustered at the steep gradients. Some test calculations

have been carried out with other forms of weight functions that also produce grid refinement near the steep

gradients. No radical changes in the comparative characteristics of the compact scheme vs. the low order

scheme have been noticed. Some arbitrariness in the selection of derivative orders and the choice of con-

stants (here, w1 = 1/3 and w2 = 1/40) provide an offset to the use of the exact solution u(x) within the weight

function. In practical calculations, the solution is not known, and the grid is refined based on the presence

of steep gradients.
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A summary of the results is given in Table 2. One can see the superior accuracy of the compact scheme

solutions in comparison to the solutions obtained by the traditional low order schemes. With only a 10-

node grid, the compact scheme method generates a solution with about 1% relative error (viz. Table 2).

In order to obtain a similar level of accuracy, the low order scheme requires about 380 nodes, or a 38-fold

increase in the size of the grid. The smaller number of grid nodes in the case of compact schemes is offset by
the need to use the more expensive Gaussian elimination of a dense Jacobian. We investigate the operation

count in detail in Section 3.3 for a time-dependent problem.

The analytical solution for the nonlinear Burgers equation (Eq. (28)), together with the above mentioned

boundary conditions, is shown in Fig. 3, along with the compact scheme solution on the 10-node grid and

the low order scheme solutions for two grids with 10 and 160 nodes. As seen in Fig. 3, the solution of the

compact scheme on the 10-node grid visibly coincides with the analytical solution, while the low order solu-

tion on the 160-node grid still deviates from the analytical profile.

It is instructive to introduce another solution: that of the steady-state nonlinear Burgers equation with
the same boundary conditions but with an artificially augmented viscosity
Table

Model

Run

1

2

3

4

5

6

Summ

weight
leff ¼ lþ bubh
2

: ð31Þ
The second term in Eq. (31) is the artificial viscosity due to the low order discretization of the convective

term. Here, bu and bh are some characteristic values for u(x) and the grid step size h, respectively. The average

values are used, viz.
bu ¼ 1

L

Z L

0

uðtÞdt; bh ¼ 1

N � 1

XN
i¼2

hi: ð32Þ
The analytical solution of the Burgers equation with augmented viscosity (Eq. (31)) is calculated for bu
and bh of the 10-node grid (viz. Fig. 3, curve ‘‘b’’). The solution of the low order scheme on the 10-node grid

almost coincides with curve ‘‘b’’. Thus, the low order scheme, in effect, solves the Burgers equation with

augmented viscosity, given by Eq. (31). For the low order scheme, the original Burgers equation solution

can be recovered only by reducing the grid step size h and thus reducing the artificial viscosity. The linear

dependence of the artificial viscosity on the grid step size makes the process of reducing the artificial vis-

cosity expensive. A similar analysis of modified (augmented) equations in which the discretization error

terms are explicitly introduced in the differential equations can be found in [53].
The compact scheme developed here contains relationships of different orders of accuracy for first and

second derivatives and for inner and boundary nodes (viz. Table 1). A summary of calculations for uniform

and nonuniform grids is presented in Table 3. Two different approaches are selected for nonuniform grids.

In the first approach (geometric grid), the refinement of the grid is obtained by reducing the grid step size in
2

problem without source terms

Discretization Nodes hmin hmax Absolute error Relative error

Compact 10 0.13726 0.869274 0.00545144 0.00995833

Compact 160 0.0076758 0.0517357 1.60552 · 10�7 2.9014 · 10�7

Low order 10 0.13726 0.869274 0.154091 0.275038

Low order 160 0.0076758 0.0517357 0.0130239 0.0237304

Low order 320 0.00382583 0.0258105 0.00657206 0.0120105

Low order 380 0.00322014 0.0217259 0.00554221 0.0101335

ary of the results for calculations with the compact scheme and the low order scheme on the nonuniform grids generated with

function W(x).



Fig. 3. Steady-state Burgers equation solutions on the nonuniform grids generated with the weight function W(x) with 10 and 160

nodes. The compact scheme solution is denoted by gray dots. The low order solution is given by black dots. Curve ‘‘a’’ – analytical

solution of the nonlinear Burgers equation. Curve ‘‘b’’ – analytical solution of the nonlinear Burgers equation with augmented

viscosity.
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the direction toward the steep gradients, i.e., hi+1 = hi/1.1. The second approach introduces a random gen-

eration of node locations, based on a uniform statistical distribution; at the same time, the step size hi is

restricted between some minimum and maximum values to avoid drastic changes in step size between
two neighboring grid intervals.

The overall order of accuracy is calculated based on the maximum grid step size hmax,m in the domain

and the maximum relative error of the solution em for each set of grids. The best linear fit (a + bx) is found

for decimal logarithms of step size and relative error {log(hmax,m),log(em)} for each set using a least squares
Table 3

Model problem without source terms

Run Grid Nodes hmax hmin Absolute error Relative error

1 Uniform 10 0.555556 0.555556 0.0160671 0.0318314

2 Uniform 20 0.263158 0.263158 0.00100837 0.00391916

3 Uniform 30 0.172414 0.172414 0.000141092 0.000826275

4 Uniform 40 0.128205 0.128205 3.36188 · 10�5 0.000263614

5 Uniform 80 0.0632911 0.0632911 1.0285 · 10�6 1.6269 · 10�5

6 Geometric 10 0.789275 0.368203 0.00351177 0.00996305

7 Geometric 20 0.543395 0.0977343 6.83564 · 10�5 7.17214 · 10�5

8 Geometric 30 0.485128 0.0336404 3.98545 · 10�5 5.36588 · 10�5

9 Geometric 40 0.465868 0.0124549 3.28249 · 10�5 4.80173 · 10�5

10 Geometric 80 0.45479 0.000268646 2.92156 · 10�5 4.44518 · 10�5

11 Random 10 0.653411 0.471848 0.00351177 0.173639

12 Random 20 0.311007 0.230678 6.83564 · 10�5 0.00428565

13 Random 30 0.196744 0.144396 3.98545 · 10�5 0.000205675

14 Random 40 0.149511 0.108282 3.28249 · 10�5 0.000224959

15 Random 80 0.0732001 0.0526377 2.92156 · 10�5 1.94477 · 10�5

Summary of the results for calculations with the compact scheme on uniform and nonuniform grids.



M. Noskov, M.D. Smooke / Journal of Computational Physics 203 (2005) 700–730 713
method; these fits are plotted in Fig. 4. The slope b of the linear fit provides the overall order of accuracy of

the numerical scheme.

The numerical solutions using the compact scheme method on the uniform grids exhibit approximately

fourth order accuracy (b = 3.51). The solutions using the same method on the nonuniform random grids

have again a fourth order accuracy (b = 4.19). The solutions on the nonuniform geometric grids show a
more complicated character. Therefore, two linear fits are given for this grid type. The first fit, based on

all data points for the geometric grids, indicates a tenth order accuracy (b = 10.1). The second fit, taken

with the data of the 10-node solution removed, shows only a third order accuracy (b = 2.66). The error de-

cays rapidly between the solutions on the 10-node grid and the 20-node grid, because the refinement

achieved with the geometric grids is sufficient to remove a dominant mode in the solution error. However,

the subsequent addition of more grid nodes does not lead to such a drastic gain of accuracy, since more

modes of numerical error have to be removed. It is worth pointing out that for the finest grids with 80

nodes, the best accuracy is obtained for the uniform grid.

3.2. Steady-state solution for a bell-shaped profile

In flames, many intermediate chemical species are distributed with sharp bell-shaped profiles, because

they are present inside the flame and quickly disappear away from the flame. Accurately solving the inter-

mediate species is important for flame modeling. A Burgers equation whose solution is similar to that of the

intermediate species is now modeled. Consider the steady-state nonlinear (w = u) Burgers equation (Eq.

(24)) with the source term given by
Fig. 4.

decima

80 nod

40, 80
gðxÞ ¼ 40

e20ðx�2Þ2
� 158

e10ðx�2Þ2
� 20x

e20ðx�2Þ2
þ 160x

e10ðx�2Þ2
� 40x2

e10ðx�2Þ2
: ð33Þ
The viscosity coefficient is set to l = 0.1, the boundary conditions are u(0) = u(L) = 0, and the dimension

of the domain is L = 5. The analytical solution to this problem is a function with a bell-shaped profile given
by the expression
Decimal logarithm of the maximum relative error in the compact scheme solution of the steady-state Burgers equation vs.

l logarithm of the maximum grid step size. Solution data is represented with symbols. Boxes – uniform grids with 10, 20, 30, 40,

es; triangles – nonuniform random grids with 10, 20, 30, 40, 80 nodes; diamonds – nonuniform geometric grids with 10, 20, 30,

nodes. Each solid line is a least squares linear fit of the form a + bx. Coefficient b defines the order of accuracy.
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Bell-sh

Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Summ
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uðxÞ ¼ exp �ðx� 2Þ2

0:1

 !
: ð34Þ
The presence of the source term does not change the Jacobian matrix because g 6¼ g(u). In addition to

uniform grids, two types of nonuniform grids are also used here. One type of nonuniform grid (the so-called

refined grid) is generated using the weight function of Eq. (30) with w1 = 4 · 10�5 and w2 = 3.5 · 10�7. This

weight function produces a smooth clustering of nodes in the regions of strong gradients. Test calculations

have been carried out with other forms of weight functions that give clustering of nodes in the regions of
high spatial activity. No drastic differences in the comparative characteristics of the nonuniform grids have

been noticed. Another type of nonuniform grid will be given below. A summary of the results of the com-

pact scheme method on all three types of grids is given in Table 4.

The solutions of the compact scheme method for the uniform grids are plotted in Fig. 5. Only the solu-

tion on the smallest grid with 16 nodes departs significantly from the analytical profile. In Fig. 5, for pur-

poses of comparison, a solution using the low order scheme is given on a uniform grid with 2000 nodes.

That the quality of this low order solution is close to that of the compact scheme solution on the 16-node

grid is remarkable, when one considers the two orders of magnitude difference in the number of nodes.
The compact scheme solutions for the nonuniform refined grids, plotted in Fig. 6, are also superior with

respect to the solution of the low order scheme. The compact scheme solution on the 41-node grid produces

almost the same results as the low order solution on the uniform grid with 2000 nodes. The compact scheme

solution on the 81-node grid almost coincides with the analytical profile.

For a given number of nodes, one still notices that the solutions on the refined grids are less accurate

than the solutions on the uniform grids. This fact is almost counterintuitive, as the refined grids are con-

structed so that more points are placed in the regions with high spatial activity. The idea of grid refinement

has proven to be very effective in solutions with low order schemes [9,54]. However, there is one fundamen-
tal difference between the solutions with the compact scheme selected here and the solutions using the low

order scheme. Low order schemes have the same overall order of accuracy for uniform and nonuniform

grids, i.e., first order because of the convective term discretizations. In contrast, the compact scheme has

overall third order accuracy on inner nodes for nonuniform grids, and the accuracy order rises to six on

the inner nodes for uniform grids. The discretization order at the boundary nodes does not grow in the

transition from nonuniform grids to uniform grids, but the bell-shaped profile is located away from the
4

aped profile problem

Grid Nodes hmax hmin Absolute error

Uniform 16 0.333333 0.333333 0.0993206

Uniform 21 0.25 0.25 0.0206067

Uniform 41 0.125 0.125 0.000275771

Uniform 81 0.0625 0.0625 3.6541 · 10�6

Uniform 161 0.03125 0.03125 5.5193 · 10�8

Refined 16 0.500453 0.0863676 1.01252

Refined 21 0.37534 0.0646443 1.10796

Refined 41 0.187672 0.0305125 0.107468

Refined 81 0.0938373 0.014377 0.0050333

Refined 161 0.0469203 0.00657941 0.000343549

Composite 20 0.335088 0.25 0.0206063

Composite 37 0.248935 0.125 0.000275769

Composite 70 0.178864 0.0625 3.65413 · 10�6

Composite 131 0.161774 0.03125 5.51317 · 10�8

ary of the results for calculations with the compact scheme on uniform and nonuniform grids for computational domain L = 5.



Fig. 5. Solution of the Burgers equation on uniform grids. Boxes – compact scheme on 16-node grid. Triangles – compact scheme on

21-node grid. Stars – compact scheme on 41-node grid. Analytical solution is shown with a solid line. Dashed line – low order scheme

on the uniform grid with 2000 nodes.

Fig. 6. Solution of the Burgers equation on nonuniform refined grids. Boxes – compact scheme on 16-node grid. Triangles – compact

scheme on 21-node grid. Stars – compact scheme on 41-node grid. Circles – compact scheme on 81-node grid. Analytical solution is

shown with a solid line. Dashed line – low order scheme on the uniform grid with 2000 nodes.
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boundaries, so the role of boundary closures is minimal for the compact scheme accuracy for the given

problem. Therefore, the higher order accuracy of the compact scheme on the inner nodes can be fully

exploited, as follows. In regions with high spatial activity, a uniform node distribution can be used to

tap the higher accuracy of the inner node discretizations of the compact scheme. For other parts of the

computational domain, a nonuniform node distribution can be applied. This type of nonuniform grid will
be called a composite grid.

Based on uniform grids (Table 4), a family of composite grids is constructed in the following manner. In

the region 0 6 x 6 3.5, uniform node distributions are used with the same step sizes as for the cases of the

uniform grids given in Fig. 5. In the region 3.5 6 x 6 5, geometric node distributions are used with a step
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size increase toward the right boundary: hi+1 = 1.1hi. The results of the calculations on the composite grids

have all the advantages of the uniform grid solutions but with fewer nodes. The maximum absolute error of

each composite grid solution is very close to the error of the corresponding uniform grid solution (viz.

Table 4).

The order of accuracy of the compact scheme is calculated for the bell-shaped profile on the three types
of grids presented in Table 4. The decimal logarithm of the grid step size, log(hmin,m), vs. the decimal log-

arithm of the maximum absolute error, log(em), is plotted in Fig. 7. The linear fits for the solution data are

defined in the form a + bx using least squares. The solution on the nonuniform refined grids shows fourth

order accuracy (b = 3.27). This same fourth order accuracy has been defined for the compact scheme on the

nonuniform random grids for the steady-state problem presented earlier (viz. Fig. 4). However, the compact

scheme solution on the uniform grids shows a significant gain in accuracy as compared to the first steady-

state case. Sixth order accuracy is obtained (b = 6.13) for the uniform grids. The same sixth order accuracy

is observed for the solutions on the composite grids (b = 6.18).
To conclude our study of the composite grid strategy, we consider again the bell-shaped profile problem

(Eq. (34)), but with the computational domain now extended to L = 50. This configuration resembles the

domain configuration found in flame calculations, in which the domain size is much larger than the region

of high gradients within the solution. For the extended domain, composite grids are again built of two

zones: a uniform grid zone (0 6 x 6 3.5) and the geometric grid zone (3.5 < x 6 50). In the geometric zone,

the grid step grows according to hi+1 = chi. For comparison purposes, calculations are also performed on

uniform grids.

The parameters of the uniform and composite grids are presented in Table 5. The number of nodes in
each composite grid N c

nodes is significantly less than in the uniform grid Nu
nodes for the same minimum grid

step size hmin. Based on the maximum absolute error emax (viz. Table 5) and the minimum grid step size, the

following fits are found for the data: for uniform grids, log10 emax = 3.04 + 6.82log10 hmin; and for compos-

ite grids, log10 emax = 3.10 + 6.87log10 hmin. Therefore, at least sixth order solution accuracy with the impli-

cit compact scheme method is recovered for both uniform and nonuniform (composite) grids. We further
Fig. 7. Decimal logarithm of the maximum absolute error of the bell-shaped profile solution of the Burgers equation obtained using

compact schemes vs. decimal logarithm of the maximum grid step size. Solution data is represented with symbols. Boxes – uniform

grids with 16, 21, 41, 81, 161 nodes; circles – nonuniform refined grids with 16, 21, 41, 81, 161 nodes; stars – nonuniform composite

grids with 20, 37, 70, 131 nodes. Each solid line is a least squares linear fit of the form a + bx. Coefficient b defines the order of

accuracy.
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note that no loss of accuracy is found for the given problem with the reduction of grid nodes in the region

with insignificant gradients. The composite grid strategy results in an overall reduction factor in the number

of nodes of between 5.91 (coarse grids) and 10.1 (fine grids), in comparison with uniform grids (viz. last

column of Table 5).

3.2.1. Spectral properties of Jacobian matrices

Due to the relatively small dimension of the linear problem in the case of the one-dimensional Burgers

equation, the spectral properties of the Jacobian matrix can be easily analyzed. These results may provide

necessary information for the development of an implicit compact scheme solver for two-dimensional prob-

lems and may help develop efficient iterative solvers based on Krylov subspace methods [42].

The uniform grids of runs 4 and 5 of Table 4 are used with two function distributions: the analytical

solution ua(x) (Eq. (34)) and a function obtained by multiplying the analytical solution function by 0.5,

i.e., 0.5ua(x). The latter case mimics a situation frequently encountered during pseudo-time stepping, when
the function distribution deviates significantly from the solution. For each distribution, a compact scheme

Jacobian matrix J is generated. Then, the norm of the residuals of the steady-state equation i f i are com-

puted as
Table

Bell-sh

Run

1

2

3

4

5

Summ

L = 50
kf k ¼
ffiffiffiffiffi
f 2

N

r
: ð35Þ
Condition numbers j1(J) and j2(J) are defined via
jnðJÞ ¼ kJknkJ�1kn; ð36Þ

based on the n-norm of the Jacobian matrix. The same formula for the condition number is applied to the

low order Jacobian Jlow. Table 6 presents residual norms, condition numbers, as well as minimum and max-

imum eigenvalues for several discretized problems.

For the function distribution 0.5ua(x), the steady-state residual norms are approximately the same for all

cases with coarse (81-node) and fine (161-node) grids and for the low order and compact scheme solvers.

For the function distribution ua(x), the residual norm is reduced consistently with the discretization order.
The accuracy order of the spatial derivatives does not directly affect the size of the condition number. In the

given solution of the Burgers equation, the condition numbers of J can be even less than the condition num-

bers of Jlow, e.g., compare cases 6 and 8. Also, the size of the residual norm i f i does not provide any indi-

cation as to the condition number of the Jacobian, e.g., compare cases 5 and 6.

In all cases in Table 6, the Jacobian eigenvalues are real-valued. The eigenvalues are almost always pos-

itive, with the exception of cases 8 and 20. Condition numbers for J and Jlow behave similarly as the time

step size increases; the condition number first decreases, reaches some minimum, and then grows again.
5

aped profile problem

Uniform grid Composite grid Nu
nodes=N

c
nodes

Nu
nodes emax N c

nodes emax hmin hmax c

201 0.127 34 0.136 2.50 · 10�1 8.00 1.200 5.91

401 4.26 · 10�4 52 4.27 · 10�4 1.25 · 10�1 7.77 1.197 7.71

601 4.12 · 10�5 68 4.12 · 10�5 8.33 · 10�2 7.80 1.199 8.83

801 7.51 · 10�6 83 7.49 · 10�6 6.25 · 10�2 7.97 1.205 9.65

1001 1.98 · 10�6 99 1.97 · 10�6 5.00 · 10�2 7.71 1.197 10.1

ary of the results for calculations with the compact scheme on uniform and composite grids for large computational domain

.



Table 6

Spectral properties of Jacobians constructed with compact schemes and low order (superscript L) discretizations in the case of the bell-

shaped profile problem

Case Nodes Dt i f i j1(J) j2(J) min k(J) max k(J)

1 161 10�6 0.4645 1.0008 · 106 1.0007 · 106 1 1.0007 · 106

2 161 10�3 0.4645 1855.7 1709.0 1 1702.3

3 161 1 0.4645 7547.4 1680.0 1 703.3

4 161 103 0.4645 67946 26532 3.259 · 10�2 702.3

5 161 ss 0.4645 67946 26532 3.259 · 10�2 702.3

6 161 ssa 1.594 · 10�7 68889 27863 3.386 · 10�2 702.6

7 161L ss 0.4588 59367 25230 2.103 · 10�2 435.9

8 161L ssa 5.914 · 10�2 137277 63579 �1.007 · 10�2 464.1

9 81 10�6 0.4630 1.0002 · 106 1.0002 · 106 1 1.0002 · 106

10 81 10�3 0.4630 1213.1 1176.6 1 1175.7

11 81 1 0.4630 1020.2 316.0 1 176.7

12 81 103 0.4630 8761.4 6519.8 3.259 · 10�2 175.7

13 81 ss 0.4630 8761.4 6519.8 3.259 · 10�2 175.7

14 81 ssa 1.061 · 10�5 9104.8 6903.3 3.385 · 10�2 176.0

15 81L 10�6 0.4549 1.0001 · 106 1.0001 · 106 1 1.0001 · 106

16 81L 10�3 0.4549 1146.9 1115.3 1 1114.5

17 81L 1 0.4549 670.5 206.8 1 115.5

18 81L 103 0.4549 18017 15470 8.796 · 10�3 114.5

19 81L ss 0.4549 18017 15470 8.796 · 10�3 114.5

20 81L ssa 0.1136 5346.8 2952.2 �6.075 · 10�2 127.8

Two uniform grids are considered: 81-node and 161-node. Jacobians are formed for pseudo-time and steady-state (labeled as ss)

equations. Two distributions are considered: analytical ua(x) (labeled with superscript �a�) and 0.5ua(x). Evaluation of the residual

norm, condition numbers, and eigenvalues is explained in the text.
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This behavior is in contrast with the monotone decrease of a condition number with decrease in Dt in the

spectral analysis of low order Jacobians for a two-dimensional Poisson equation with periodic boundary

conditions [16]. The following estimates for J (same applies to Jlow) can be used for the problem considered

here:
jnðJÞ � Dt�1; qðJÞ ¼ maxjkðJÞj � Dt�1 for Dt 6 10�3: ð37Þ

This eigenvalue behavior can be easily understood with Jlow. Because of the Dirichlet boundary condi-

tions, the characteristic equation for the Jacobian can be cast in the form
detðJ low � kIÞ ¼ det

1� k 0 0

0 T � kIT 0

0 0 1� k

0B@
1CA ¼ ð1� kÞ2 detðT � kIT Þ ¼ 0; ð38Þ
where T is the tridiagonal submatrix (for three-point stencils), each of whose subdiagonal entries are a,

main diagonal entries are b, and superdiagonal entries are c; IT – the identity matrix of compatible size

NT = N � 2; and k – eigenvalues. The eigenvalues for the tridiagonal matrix T are [45]
kj ¼ bþ 2
ffiffiffiffiffi
ac

p
cos

pj
NT þ 1

� �
; j ¼ 1; . . . ;NT : ð39Þ
When b � Dt�1 � ffiffiffiffiffi
ac

p
, as in the case of small time steps, the eigenvalues are clustered around kb � Dt�1,

except two (small) values at k = 1. If the time step is large, or effectively infinite as in the steady-state case,

then, due to the presence of the second derivative operator, the constants a, b, and c are all O(h�2). The

spectral radius of Jlow is then



Fig. 8.

Table
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qðJ lowÞ ¼ Oðh�2Þ: ð40Þ

For sufficiently large grids, NT � 1, and the eigenvalues are bounded by
minð1; b� 2
ffiffiffiffiffi
ac

p
Þ 6 kj 6 bþ 2

ffiffiffiffiffi
ac

p
: ð41Þ
In the case of the compact scheme discretization, submatrix T is dense, which complicates the analysis.

However, if the entries of matrix T are of the form aijh
�2, then an estimation similar to that of Eq. (40) can

be expected for the spectral radius. As is evident from Table 6, in the case of dominating spatial operators,

the spectral radius of J and of Jlow for the Burgers equation grows four-fold when the grid step size is cut in

half (compare cases 8, 20 and 5, 13 and 6, 14).

A large condition number frequently indicates the deterioration of the convergence of an iterative solver

[55]. However, it is currently accepted that the clustering of eigenvalues is another important factor for the

loss or gain of iterative solver convergence for general nonsymmetric matrices [56]. The distribution of the
eigenvalues for J and Jlow for several values of time step size are given in Fig. 8 for cases 1 through 8 of

Table 6. As shown in Fig. 8, despite a large condition number in case 1, the eigenvalues are well clustered

around minimum and maximum values, so, good convergence of the iterative solver for the linear system

(e.g., Eq. (25)) is expected. With increased time step size, the clustering deteriorates; thus, an efficient pre-

conditioner [42,56] may be a necessary feature of the iterative solver.

3.2.2. Implementation of partial Jacobians as preconditioners

A uniform 161-node grid (viz. Table 4) is used to investigate the effect of different sparsification criteria
in order to form partial Jacobians. The width of each partial stencil (number of nodes) is plotted in Fig. 9

for each grid node and for the three sparsification strategies given by Eqs. (15)–(17). A constant width of

the partial stencil for the inner nodes is dictated by the use of uniform grids. For nonuniform grids, the

partial stencil width changes even among the inner nodes. In the bulk of the computational domain, the

sparsification based on the Jacobian entries (Eq. (17)) produces a width close to the one given by the second
Distribution of the Jacobian eigenvalues (real-valued) for several Jacobian matrices corresponding to cases 1 through 8 of

6.
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derivative matrix (Eq. (16)). In the region where the convective term of the Burgers equation is not negli-

gible, the width of the partial stencil is comparable to the one obtained with Eq. (15).

For the preconditioner equation
Fig. 9.

on sev
PcDu ¼ �f ð42Þ

corresponding to Eq. (25), one may use P = Jp. Currently, in the literature, there is no single a priori indi-

cator of preconditioner quality. However, it is generally acknowledged that a good preconditioner results in
a small condition number for the matrix product P�1J. Ideally, jnðJ�1

p JÞ � 1. In addition, the number of

nonzeroes in Jp should be relatively small.

To study the condition number of product J�1
p J , the Jacobian matrix J of case 6 of Table 6 is selected.

Shown in Fig. 10 is the difference Dj ¼ j2ðJ�1
p JÞ � 1 vs. the nonzero density of Jp (number of matrix non-

zeroes normalized by the total number of matrix entries). We select two sparsification methods. Method 1 is

given by Eq. (17). Method 2 is based on Eqs. (15) and (16); a ‘‘greedy’’algorithm is used to select the wider

stencil of the two possible. For each sparsification algorithm, seven threshold values are used: h = 10�k, for

k = 1, . . ., 7. Fig. 10 also contains a single data point for the case when Jlow (case 8 of Table 6) is used as the
preconditioner. Preconditioning by Jlow is advocated in [57] for a second-order-accurate implicit solver.

However, when compact schemes are used with at least third order accuracy, then a low order discretization

may not produce an efficient preconditioner. In the case considered, the use of Jlow as a preconditioner

resulted in a 60-fold reduction in the condition number, as compared to the condition number j2(J) given
Width of partial stencils throughout the computational domain. Number of grid nodes: 161. Partial stencils are selected based

eral criteria for threshold h. Panel (a) corresponds to Eq. (15), panel (b) – Eq. (16), panel (c) – Eq. (17).
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in Table 6. However, the condition number j2ðJ�1
lowJÞ may still be large enough to desire a better

preconditioner.

Comparison of Methods 1 and 2 for the sparsification of the Jacobian shows that for a given nonzero

density of the preconditioner, Method 1 results in almost an order of magnitude reduction in the difference

Dj in comparison with Method 2. From an implementation point of view, Method 1 may be less efficient, as
it requires the dynamic analysis of Jacobian entries each time the preconditioner is formed, and it may

require the generation of more Jacobian entries than would normally be stored. In Method 2, which results

in a static sparsity pattern for the partial Jacobian, the analysis of the stencil matrices must be done only

once for each grid.

Despite the differences in implementation, both methods systematically reduce of the condition number

based on threshold value. The difference Dj can be made as small as needed with the use of smaller thresh-

olds. Of course, smaller thresholds result in increased Jp densities. The optimal threshold values in Eqs.

(15)–(17) may vary based on the requirements for solution accuracy, the size of the grid, the number of
unknowns per grid node, and the parameters of the computer equipment. Another factor of uncertainty

for the optimal threshold is the choice for the inexact (incomplete) decomposition of the partial Jacobian.

The difference Dj in Fig. 10 represents the theoretical maximum of the preconditioning strategy that can be

achieved for a generated partial Jacobian.

3.3. Solution of the time-dependent Burgers equation

The linear (w = c) Burgers equation (Eq. (24)) has the time-dependent solution
Fig. 10

Vertica

based

sparsifi

partial
uðx; tÞ ¼ expð�u2ltÞ sinðuðx� ctÞÞ; ð43Þ

when provided with an initial condition of the form uðx; 0Þ ¼ sinðuxÞ and compatible boundary conditions
uðx1;N ; tÞ ¼ expð�u2ltÞ sinðuðx1;N � ctÞÞ ð44Þ
. Effect of the sparsification method on the quality of the preconditioner. Horizontal coordinate: sparsity of a partial Jacobian.

l coordinate: jðJ�1
p JÞ � 1: Solid line – sparsification based on the absolute value of Jacobian entries, dashed line – sparsification

on the partial stencils (‘‘greedy’’ algorithm), and large solid dot – preconditioning by a low order Jacobian. For each

cation method, seven threshold values are used: h = 10�k, k = 1, . . ., 7. Larger threshold values correspond to smaller sparsity of

Jacobian.
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on the domain x1 6 x 6 xN. The solution models the exponential decay of a propagating harmonic wave,

for which the direction of propagation is from left to right (c,u > 0). The problem parameters are:

c = u = 1; l = 0.5; x1 = 0; and xN = 6p. Only uniform grids and constant time steps are used for the calcu-

lations. The solutions are obtained on the time interval 0 < t 6 10. The compact scheme method and the

low order method have been employed, together with one of three implicit temporal discretization methods:
the first-order Euler (EU), the second order Crank–Nicolson (CN), and second order backward differences

(B2). A summary of the time-dependent calculations is given in Table 7. Calculations are performed on a

computer system equipped with an AMD Opteron 240 (1.4 GHz) processor. The total calculation time is

given as tCPU in Table 7. On small grids, the calculation time was limited mainly by the rate of data file

output.

The error norm iDuki of the time-dependent calculations is evaluated according to Eq. (35), where the

absolute error Duk = unum(xi,t
k) � u(xi,t

k) is known for each time level tk. Here, unum(xi,t
k) represents the

numerical solution vector defined on the grid at time level tk; u(xi,t
k) – analytical solution vector defined

on the same grid for the same time level; and N – number of nodes in the grid. The maximum error norm

for each time-dependent solution is given in the last column of Table 7. Results of runs 3, 4, 5, 10, 14, and

17 are plotted in Figs. 11–13 for solution times t = 1, 5, and 10. Linear interpolation is used between the two

closest computed time levels to obtain a solution for the selected time.

Based on the solutions presented for times t = 1, 5, and 10, the following observations can be made. At

early times, the solutions with all methods closely follow the analytical profile. Only small deviations of the

solution for the low order scheme on a coarse grid (viz. Fig. 11) become noticeable. At intermediate solu-

tion times, the deviation of the low order scheme solution becomes more apparent (viz. Fig. 12), and in
addition, the deviations of the low order scheme solution on the fine grid (run 17) and of the compact

scheme method with the Euler time discretization (run 4) appear. In the final plot (Fig. 13), only the solu-

tion of the compact scheme with the Crank–Nicolson time discretization (run 5) still follows the analytical

solution.
Table 7

Time-dependent Burgers equation

Run Spatial scheme Nodes Time scheme Dt tCPU, s maxkiDuki maxkkDukk
1 Compact 21 EU 9.42477 · 10�2 0.05 2.682 · 10�2 0.2993

2 Compact 21 CN 9.42477 · 10�2 0.03 5.407 · 10�3 0.2123

3 Compact 21 B2 9.42477 · 10�2 0.06 5.703 · 10�3 0.2212

4 Compact 41 EU 4.44132 · 10�2 0.11 1.311 · 10�2 0.1970

5 Compact 41 CN 4.44132 · 10�2 0.11 4.133 · 10�4 0.02587

6 Compact 41 B2 4.44132 · 10�2 0.10 5.889 · 10�4 0.02165

7 Compact 81 EU 1.11033 · 10�2 1.06 3.378 · 10�3 0.05294

8 Compact 81 CN 1.11033 · 10�2 1.04 2.739 · 10�5 0.001791

9 Compact 81 B2 1.11033 · 10�2 1.13 3.749 · 10�5 0.001473

10 Low order 41 EU 4.44132 · 10�2 0.08 9.514 · 10�2 1.604

11 Low order 41 CN 4.44132 · 10�2 0.08 8.980 · 10�2 1.605

12 Low order 41 B2 4.44132 · 10�2 0.15 8.843 · 10�2 1.567

13 Low order 81 EU 1.11033 · 10�2 0.64 5.195 · 10�2 0.9693

14 Low order 81 CN 1.11033 · 10�2 0.80 5.036 · 10�2 0.9631

15 Low order 81 B2 1.11033 · 10�2 0.58 5.019 · 10�2 0.9585

16 Low order 401 EU 4.44132 · 10�4 138.08 1.124 · 10�2 0.2384

17 Low order 401 CN 4.44132 · 10�4 136.46 1.116 · 10�2 0.2376

18 Low order 401 B2 4.44132 · 10�4 138.77 1.116 · 10�2 0.2376

Summary of the results for calculations with the compact scheme and low order methods on uniform grids.



In Fig. 14, the decimal logarithm of the error norm iDuki is plotted against the computed time. The

error of the low order scheme exhibits linear decay with grid spacing reduction. There is almost no dif-

ference in the results obtained with first or second order temporal discretization as error lines almost

coincide for runs 10, 11, and 12, as well as for runs 13, 14, and 15 and for runs 16, 17, and 18. The error

of the compact scheme method in combination with the first order Euler scheme decays linearly with the
reduction of grid spacing (runs 1, 4, and 7 (viz. Table 7)). Thus, the Euler discretization produces the

largest error. If a second order temporal discretization is used, together with the compact schemes, then

approximately a fourth order spatial accuracy is achieved. The coefficients of the linear fit {log(hmax,m),

log(maxiDuki)} are 3.81 and 3.62 for Crank–Nicolson and second-order backward difference schemes,

respectively (viz. Table 7). Between the two second order temporal discretizations, the Crank–Nicolson

scheme results in somewhat smaller computational error for the problem selected. Additionally, in Table

7, the maximum of a relative solution error kDukk is given, in which Duk is scaled with exp(�u2lt) at

each time level.
As shown in Table 7, the CPU time of the low order accuracy code must be several orders of magnitude

larger than the CPU time of compact scheme code in order to obtain the same temporal and spatial accu-

racy. The following reasoning justifies this conclusion. The low order accuracy code has an error of the

form OðDxlowÞ � OðN�1
lowÞ. The error for the compact scheme code is ðDxkcsÞ � OðN�k

cs Þ. Here, Dxlow and Dxcs
are the grid spacings for low order and compact scheme codes, Nlow and Ncs are the number of grid nodes in

the same codes, and kP 3 is the overall order of spatial accuracy of the compact scheme in use. In order to

obtain the same accuracy of the solutions of low order and compact scheme codes, the following must be

satisfied
Fig. 11
acsN�k
cs ¼ alowN�1

low; ð45Þ

where acs and alow are some coefficients which depend on the form of the solution and the coefficients inside

the expressions for local truncation errors of the corresponding discretizations. For sufficiently refined
grids, the time step is limited by the diffusion operator discretization. If a total flow time t must be simu-

lated, then the low order code must take M low ¼ OðtDx�2
lowÞ � OðtN 2

lowÞ steps and the compact scheme code
. Solution of the time-dependent Burgers equation at time t = 1 for the runs presented in



Fig. 12. Solution of the time-dependent Burgers equation at time t = 5 for the runs presented in Table 7. The legend is the same as in

Fig. 11.

Fig. 13. Solution of the time-dependent Burgers equation at time t = 10 for the runs presented in Table 7. The legend is the same as in

Fig. 11.
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must take M cs ¼ OðtDx�2
cs Þ � OðtN 2

csÞ steps. At each time level, the most expensive operation within the im-

plicit compact scheme solver is the solution of the linear system, which requires the Gaussian decomposi-

tion of the dense Jacobian matrix. The cost of this operation expressed in floating point operations is

costcs ¼ O
N3

cs

3

� �
. The low order Jacobian has a tridiagonal structure and the solution of the corresponding

linear system can be effectively accomplished with the Thomas algorithm, of costcs = O(3Nlow). To leading

order, the floating point operation count for the compact scheme solver to model the solution for a total

time t is
countcs ¼ costcsM cs ¼ O
1

3
N 3

csM cs

� �
: ð46Þ



Fig. 14. Decimal logarithm of maximum error norm vs. the computed time for solutions with the compact scheme and the low order

methods. Descriptions of runs 1 through 18 are given in Table 7.
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According to Eq. (45), in order to obtain the same solution accuracy, the number of grid nodes of the

low order solver must be N low ¼ alowNk
cs

acs
. For a given total time t, a given domain length, and given coefficients

of the Burgers equation (thus leading to a given Fourier number value), we can write M low ¼ M csN 2
lowN

�2
cs .

Only taking into account the linear solve within the implicit solver, the operation count for the low order

solver to model the solution for a total time t is
countlow ¼ costlowM low ¼ O 3N lowM cs

N 2
low

N 2
cs

� �
¼ O 3

alow
acs

� �3

N 3k�2
cs M cs

 !
: ð47Þ
If, for a given problem, the compact scheme achieves fourth order accuracy in space (k = 4), then we

have
countlow ¼ O 3
alow
acs

� �3

N 10
csM cs

 !
: ð48Þ
The comparison of operation count for the compact scheme solver (Eq. (46)) and the low order solver
(Eq. (48)) shows that even with the different algorithms used for the decomposition of Jacobian matrices,

the compact scheme solver is always more efficient for time-dependent problems than the low order solver.

This fact can explain the several orders of magnitude difference observed in CPU time for runs 2 and 17,

with still much lower accuracy of the low order solver.

3.4. Unstable flame propagation

Finally, we demonstrate the ability of the compact scheme solver to model stiff problems. A well-known
unstable flame [58] (test problem A) is considered. Similar problems of unstable flame propagation were

considered in [59,60]. A propagating planar flame is modeled with a single step reaction. Under the condi-

tions of nonunity Lewis number (Le > 2), oscillations in flame velocity may occur. A detailed description of

this problem can be found in [58]. Here for brevity, we provide only a mathematical formulation of the

problem. A system of two PDEs must be solved simultaneously:
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oT
ot

� o2T
ox2

¼ R; ð49Þ

oY
ot

� 1

Le
o2Y
ox2

¼ �R; ð50Þ
where T is the normalized temperature and Y is the normalized mass fraction of the reactant. The normal-
ized reaction rate R is defined as
R ¼ b2Y
2Le

exp
bðT � 1Þ

1þ aðT � 1Þ

� �
: ð51Þ
Reaction rate coefficients and the Lewis number are given by a = 0.8, b = 20, and Le = 2. The initial con-

ditions are T = exp(x),Y = 1 � exp(xLe) for x 6 0 and T = 1, Y = 0 for x > 0. The boundary conditions are

T = 0, Y = 1 for x ! �1 and oT/ox = oY/ox = 0 for x ! 1. This problem setup defines Case 4 of [58, p.

10]. An accurate solution of this problem requires a very stable numerical algorithm to calculate a set of stiff

PDEs without the introduction of numerical instabilities. In addition, a numerical scheme must have excel-

lent spatial resolution properties in order to model the flame velocity evolution.

For our calculations we use the implicit compact scheme solver with the Crank–Nicolson temporal dis-
cretization with a time step Dt = 10�3. A uniform grid is used in the domain of interest where a flame front

is located. To the left and right of the domain of interest we apply a geometric grid with a step size increase

in the direction toward boundaries. The width of the domain of interest is 20. A set of composite grids is

used which corresponds to the uniform grid spacing of Dxdi = 0.2, 0.1, 0.05, and 0.025, respectively. In these

grids, there are 101, 201, 401, and 801 grid nodes in the domain of interest. There are additional 20 to 50

grid nodes located outside of the domain of interest.

An evolution of the flame front velocity is shown in Fig. 15. In the case of underresolved grid, wiggles

appear in the flame velocity evolution (curve a). We stress that no wiggles were observed in the instantene-
ous profiles of the temperature and species. As the domain of interest becomes more refined, we observe a

flame evolution which is in full accordance with the results predicted in [58]. We estimate that for the low

order solver employing centered differences one has to use grid spacing Dx at least one order smaller than

that of Dxdi to observe a similar behavior of the unsteady flame (note the absence of convective terms in the

governing equations).
4. Conclusions

In the present work, we have developed a novel, higher order in space, one-dimensional, implicit com-

pact scheme solver on nonuniform grids, suitable for modeling steady-state and time-dependent problems.

Ultimately, this solver is targeted as an alternative to traditional implicit solvers with low order spatial dis-
cretizations for the solution of stiff nonlinear time-dependent problems in multidimensional configurations.

In order to obtain an efficient implicit solver, we have reviewed and analyzed several possible options for

spatial discretizations and have shown several advantageous properties of compact schemes. We have

applied necessary stability conditions to study the properties of the implicit compact scheme solver. In

all cases considered, the implicit solver has been shown to be unconditionally stable.

Facing the lack of published algorithms suitable for the development of an efficient, implicit solver with

compact scheme discretizations, we have defined three tasks that must be solved in order to obtain an accu-

rate and relatively inexpensive treatment of the Jacobian matrices: how to generate a Jacobian matrix; how
to evaluate a Jacobian-vector product; and how to solve a preconditioner equation. Based on the linearity

of compact schemes, we have demonstrated how to determine entries in the Jacobian matrix and carry out



Fig. 15. Dimensionless unstable flame velocity vs. dimensionless flow time. Curves a, b, c, and d represent compact scheme solutions

with Dxdi = 0.2, 0.1, 0.05, and 0.025, respectively.
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Jacobian-vector multiplication exactly, using operations involving the component form of the Jacobian.

Based on the exponential decay of off-diagonal stencil matrix entries, we have indicated approaches for

the systematic approximation (sparsification) of dense Jacobians constructed with compact schemes.

To demonstrate the advantages of the implicit compact scheme solver, we have solved several steady-

state and time-dependent problems for the Burgers equation. In all problems considered, the implicit
compact scheme solver has shown more than an order of magnitude (and, for some problems, more than

two orders of magnitude) gain of accuracy in comparison with a traditional implicit low order solver.

An analysis of the implicit compact scheme solver has been carried out to demonstrate an order of spa-

tial accuracy varying between three (on general nonuniform grids) and six (on uniform and composite

grids). The spatial accuracy has been found to be affected by grid structure and by the presence of steep

gradients near the boundary nodes. We have illustrated the benefits of using a composite form of nonuni-

form gridding that enables the implicit compact scheme solver to achieve sixth order accuracy. In our model

time-dependent problem, several orders of magnitude reduction in computational time was achieved when
the compact scheme solver was used instead of the low order solver. The new solver was found to be robust

when solving a stiff system of PDEs which models an unstable flame propagation. For a well-known test

flame problem, excellent agreement with previously published results has been recovered in a compact

scheme solver solution.

Finally, an analysis of the spectral properties of the Jacobian matrices has been presented to show the

behavior of condition numbers and eigenvalue distributions. The condition number of the compact scheme

Jacobian has been found to be of comparable magnitude to that of the low order Jacobian for the same prob-

lem setup. This fact is viewed as encouraging and shows that there is currently no evidence found against the
use of compact scheme Jacobians within iterative solvers in the case of multidimensional problems.
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